Современная мебель

Лунная станция. Лунная орбитальная станция

Не секрет, что освоение Луны и создание на ней обитаемой базы является одним из приоритетных направлений Российской космонавтики. Однако для реализации столь масштабного проекта недостаточно организовать одноразовый полет, но необходимо построить инфраструктуру, которая позволяла бы осуществлять на Луну и с неё на Землю регулярные полеты. Для этого, помимо создания нового космического корабля и ракеты-носителя сверхтяжелого класса, необходимо создать базы в космосе, которыми являются орбитальные станции. Одна из них может появиться на земной орбите уже в 2017-2020 году и будет развиваться в последующие годы, путем наращивания модулей, в том числе и для старта на Луну.

Предполагается, что к 2024 году станция будет оборудована энергетическим и трансформируемыми модулями, предназначенными для работы с лунными миссиями. Однако это лишь часть лунной инфраструктуры. Следующим важным шагом является лунная орбитальная станция, создание которой включено в космическую программу России. Начиная с 2020 года, Роскосмосом будут рассматриваться технические предложения по станции, а в 2025 году должна быть утверждена эскизная документация на её модули. При этом компьютеры и научное оборудование для лунной орбитальной станции начнут разрабатываться уже с 2022 года, чтобы с 2024 года перейти к наземной отработке. В состав лунной станции должно войти несколько модулей: энергетический, лаборатория, а также узловой - для стыковки космических кораблей.

Говоря о необходимости подобной станции на орбите Луны, нужно отметить, что улететь с Луны на Землю можно лишь один раз в 14 суток, когда совпадают их плоскости орбит. Однако обстоятельства могут потребовать срочного отлета, и в таком случае станция будет просто жизненно необходима. Кроме того она сможет решать целый комплекс задач различного характера, начиная от связи, и заканчивая вопросами снабжения. По мнению ряда специалистов наиболее рациональным будет вариант размещения лунной орбитальной станции в точке Лагранжа, расположенной в 60000 км от Луны. В этой точке силы притяжения Земли и Луны взаимно уравновешиваются, и из данного места можно будет осуществлять старт к Луне или к Марсу с минимальными энергетическими затратами.

Схема полета на Луну, вероятно, будет выглядеть следующим образом. Ракета-носитель выводит космический корабль на орбиту, после чего его примет космическая станция России. находящаяся на земной орбите. Там он будет подготовлен к дальнейшему полету, а при необходимости здесь же будет выполнена сборка корабля из нескольких модулей выведенных в несколько запусков. Стартовав, корабль преодолеет расстояние до российской лунной орбитальной станции и пристыкуется к ней, после чего может остаться на орбите, а на Луну полетит спускаемый аппарат.

О целесообразности создания лунной орбитальной станции

По мнению ряда специалистов, как в России, так и за рубежом, наиболее целесообразным представляется сначала развернуть на окололунной орбите лунную орбитальную станцию, главным назначением которой со временем стала бы роль пересадочной станции на пути с Земли на лунную базу. Кроме того, это может позволить на более ранних стадиях достичь многоразовости использования транспортных средств на трассе между орбитами Земли и Луны.

Естественно, что на борту лунной орбитальной станции могут проводиться и программы экспериментов по дистанционному зондированию Луны, мониторингу межпланетной среды, в том числе космических лучей солнечного, галактического и внегалактического происхождения, и по определению последствий их длительного воздействия на человека, растения и животных.

В техническом плане создание лунной орбитальной станции возможно на современном уровне развития отечественной космической техники. Однако большой необходимости в лунной орбитальной станции на первых этапах освоения Луны все же нет, и осуществление пилотируемых экспедиций и доставка грузов вполне возможны без ее наличия, что наглядно продемонстрировали экспедиции на Луну по программе «Аполлон». И даже наоборот, необходимость стыковки с этой станцией накладывает дополнительные баллистические ограничения на моменты старта к Луне. Также на первых этапах освоения Луны вряд ли целесообразно применение многоразовых космических аппаратов, так как применение многоразовых транспортных средств до начала промышленного производства ракетного топлива на Луне увеличит массу доставляемых с Земли грузов и усложнит всю транспортную космическую систему в целом.

Создание лунной орбитальной станции потребует значительного объема работ не только по выведению модулей станции на орбиту искусственного спутника Луны, но и по ее эксплуатации. Поэтому создание и эксплуатация орбитальной станции целесообразны только после начала промышленного производства ракетного топлива на Луне и серийного использования многоразовых транспортных средств. В этом случае основным назначением такой станции может оказаться хранение ракетного топлива и дозаправка им транспортных кораблей.

Лунная орбитальная станция

Главы космических агентств договорились о создании международной окололунной посещаемой платформы, которая может стать первым шагом на пути освоения дальнего космоса. Начато обсуждение потенциального облика платформы и требований к её элементам и используемым интерфейсам.

Предложения по будущей программе создания и эксплуатации станции будут представлены главам агентств—партнёров по программе МКС в первой половине 2017 года.

Программа освоения Луны — стратегическая цель российской пилотируемой космонавтики. На 2030-е годы намечена высадка космонавтов на поверхность Луны с последующим основанием лунной базы. Проектированием лунной базы занимаются в РКК Энергия и ЦНИИмаше.

Источники: informatik-m.ru, universal_ru_de.academic.ru, unnatural.ru, rubforum.ru, universal_ru_en.academic.ru

Музей ужасов

Проклятия волхвов

Билет на Марс в один конец

Пифагорейцы

Курганы мертвых

Не так давно в новороссийском озере были найдены древние захоронения. Житель Новороссийска рассказал, что на дне озера находятся странные...

Сейшельская пальма

Лодоицея мальдивская является, вероятно, самой знаменитой пальмой. В мире она известна под названием сейшельской пальмы. С плодами этого удивительного...

Карта подземной Москвы

Подземная карта Москвы была разработана по заказу Правительства Москвы Институтом геоэкологии имени Е.М. Сергеева специально для того, чтобы получить ясную...

Суд Линча

Суд Линча представляет собой убийство человека, который обвиняется в преступлении. Отличительной чертой суда Линча является отсутствие суда и следствия: ...

Достопримечательности Великого Новгорода

Новгородскому кремлю дали необычное имя: Детинец. Именно так прозвали его древние новгородцы. Строительство первого сооружения кремля было начато еще князем...

Самые злые породы собак

Если вы приобретаете домашнего питомца для содержания его в квартире, то следует заранее ознакомиться с тем, какие особенности могут быть у...

Роскосмос готовится к участию в проекте строительства окололунной посещаемой станции Deep Space Gateway (DSG), предложенном NASA. Идея состоит в создании многомодульной посещаемой станции на гало-орбите в нескольких тысячах километров от Луны. Такая станция должна стать новой лабораторией для изучения космических эффектов и опорой для дальнейших исследовательских пилотируемых полетов на Луну и Марс.

Проект был представлен NASA в марте 2017 года, когда стал очевидным курс на Луну новой администрации президента США Дональда Трампа. NASA при Бараке Обаме отказалась от идей достижения Луны и обозначила целью Марс с переходным этапом посещения околоземного астероида - Asteroid Redirect Mission. Ввиду сложности, а главное длительности, обозначенной стратегии, подход нового президента направлен на приближение каких-либо существенных результатов. Сначала он запустить к Луне людей сразу в первом испытательном полете ракеты SLS и корабля Orion в 2019 году, но технические специалисты отговорили - риск высок.

От Луны проще стартовать и к Марсу. Если собирать марсианский корабль на окололунной гало-орбите, постепенно подвозя баки с топливом и элементы конструкции, то можно сэкономить до трети массы топлива на полет, по сравнению со стартом с околоземной орбиты. Можно добиться еще большей экономии, если прихватить часть станции в виде отсека марсианского корабля.

Не стоит забывать и политический мотив. Сегодня главный внешнеполитический противник США - Китай. И он уже приближается к созданию своей собственной околоземной станции. Поэтому США важно подчеркнуть сохраняющееся технологическое превосходство, лунная станция для этого отлично подходит, и здесь Россия, Европа и Япония просто помогают в этом.

Какой же интерес тут у России?

Несмотря на политические разногласия России с США, в российской космической отрасли возобладал здравый смысл, подкрепленный экономическими мотивами. Для Роскосмоса сотрудничество с NASA в 90-е годы по программе «Мир», и в 2000-е по программе МКС практически обеспечило сохранность и высокий уровень пилотируемой космонавтики. Проект МКС на сегодня продлен до 2024 года, и после него никто не мог бы назвать достойную и одновременно посильную для бюджета цель. Несмотря на декларируемые лунные амбиции, как только зашла речь о деньгах при принятии Федеральной космической программы на 2015-2025, под нож первым делом пошла сверхтяжелая ракета, без которой достижение Луны крайне затруднено. Была надежда на четырехпусковую схему с «Ангарой А5В», но и о ней пришлось забыть, когда стало ясно что для этой ракеты нет другого спроса, а на Восточном будет только один стартовый стол. Смогли сохранить только разработки межпланетного космического корабля «Федерация», но без «Ангары-А5В» он обречен на околоземные полеты, где сейчас доминирует готовый к работе «Союз-МС».

Даже если предположить, что в бюджете нашлись деньги на сверхтяжелую ракету, стоит ли надрывать отрасль десять лет ради того, чтобы повторить прогулку Армстронга 60-летней давности? А что потом? Свернуть все работы и забыть, как сделали США в 70-е?

В результате, до вчерашнего дня, Роскосмос находился в патовой ситуации - лететь на Луну денег и особого смысла нет, а около Земли есть смысл летать только на МКС, которая скоро закончится. Но с вхождением в лунное партнерство всё меняется.

Во-первых, снова появляются возможности получения заказов на разработку и эксплуатацию техники для NASA. Во-вторых, в сверхтяжелой ракете и межпланетных полетах появляется долговременный смысл, ведь мы не просто летим за самоутверждением, а летим на работу для развития техники и продвижения человечества в дальний космос, причем в значительной степени не за свой счет. В-третьих, отрасль получает столь долгожданный новый стимул развития: наконец появляется смысл в корабле «Федерация», новых модулях станции, системах жизнеобеспечения, скафандрах, приборах, лунных спутниках , луноходах... Молодые коллективы наконец могут реализовать себя не в повторении советских схем, а привнести что-то свое на современном уровне.

Участие Роскосмоса помогает и NASA. Программы, которые NASA пыталось развивать в одиночку: Constellation, Asteroid Redirect Mission, оказались очень уязвимы к переменам внутриполитического курса. Международное же партнерство налагает взаимные обязательства и отказ о какого-то проекта приобретает не только экономический, но и политический окрас, и тут никто не захочет терять лишние очки. Это касается и российских международных программ.

Так что, несмотря на преобладающее участие США в проекте DSG, зависимость партнеров тут взаимная, что, собственно, и называется сотрудничеством в освоении космоса. Можно это только приветствовать.

АДЕЛАИДА (Австралия), 27 сен — РИА Новости. Космические агентства России и США договорились о создании новой космической станции Deep Space Gateway на орбите Луны, заявил глава "Роскосмоса" Игорь Комаров на Международном конгрессе астронавтики — 2017, который проходит в Австралии.

Участие в проекте могут принять Китай, Индия, а также другие страны БРИКС.

"Мы договорились о том, что будем совместно участвовать в проекте создания новой международной окололунной станции Deep Space Gateway. На первом этапе будем строить орбитальную часть с дальнейшей перспективой применения отработанных технологий на поверхности Луны и впоследствии — Марса. Вывод первых модулей возможен в 2024-2026 годах", — сказал Комаров.

Вклад России

По словам главы "Роскосмоса", стороны уже обсуждали возможный вклад в создание новой станции. Так, Россия может создать от одного до трех модулей и стандартов унифицированного стыковочного механизма для всех кораблей, которые будут прибывать к Deep Space Gateway, а также предлагает использовать для вывода конструкций на окололунную орбиту создаваемую сейчас ракету-носитель сверхтяжелого класса.

Директор "Роскосмоса" по пилотируемым программам Сергей Крикалев добавил, что Россия также может разработать и жилой модуль.

Конкретный технологический и финансовый вклад всех участников создания Deep Space Gateway будет обсуждаться на следующем этапе переговоров, отметил Комаров. По его словам, сейчас подписано совместное заявление о намерениях работать по проекту окололунной станции, но сам договор требует серьезной проработки уже на государственном уровне. В связи с этим будет пересматриваться Федеральная космическая программа на 2016-2025 годы.

"Мы надеемся представить интересную и важную программу, докажем ее нужность и обеспечим финансирование. У нас есть понимание и надежда частично найти внешние источники финансирования этой программы. Но при этом основная задача — это государственное финансирование", — заявил гендиректор "Роскосмоса".

Необходимость унификации

Комаров отметил, что как минимум пять мировых космических агентств работают над созданием собственных кораблей и систем, поэтому, чтобы в будущем избежать проблем в вопросах технического взаимодействия, часть стандартов должна быть унифицирована.

Некоторые ключевые стандарты, в частности стыковочный узел, будут сформированы на базе российских разработок, добавил он.

"С учетом того количества стыковок, которые мы проводили, и того опыта, который у нас имеется, равных России в этом направлении нет. Поэтому этот стандарт будет максимально близок к российскому. Также на основе российских наработок будет разработан стандарт систем жизнеобеспечения", — сказал глава "Роскосмоса".

Крикалев со своей стороны пояснил, что стандарты стыковки будут содержать единые требования к размерам деталей стыковочного узла.

"Наиболее проработанный вариант — это шлюзовой модуль, также могут быть унифицированы габариты элементов жилого модуля. Что касается носителей, то новые элементы могут выводиться как на американских носителях SLS, так и на российском "Протоне" или "Ангаре", — сказал он.

Создание Deep Space Gateway откроет новые возможности по использованию мощностей российской промышленности, и серьезную роль здесь могут сыграть наработки РКК "Энергия", заключил Комаров.

Программа составлена Институтом космических исследований РАН по поручению Роскосмоса в 2014 году. ИКИ предлагает использовать Луну как научный полигон для масштабных астрономических и геофизических исследований. Предлагается создать на Луне оптическую обсерваторию и автоматический радиотелескоп-интерферометр, состоящий из отдельных приемников, распределенных по поверхности Луны. Несмотря на то, что программа не была официально опубликована, основные ее положения, несомненно, были учтены при разработке Федеральной космической программы на 2016-2025 годы.

Программа изучения и освоения Луны разбита на этапы, объединенные общей стратегической целью и различающиеся по методам работы на Луне. Всего выделено четыре этапа работы на Луне, хотя сами эксперты говорят о трех, поскольку последний в их программе не рассматривается.

Первый этап: 2016-2028 годы

До 2028 года предполагается изучение Луны автоматическими станциями, выбор площадки для расширения присутствия человека. Уже известно, что она будет на южном полюсе, однако точное место будет выбрано только после того, как автоматические миссии предоставят всю информацию о ресурсах, необходимых для снабжения будущей базы, включая энергию (освещенность солнцем), наличие льда и др.

Подробнее обо всех космических аппаратах, которые планируется отправить к Луне на первом этапе, можно прочитать в подразделах этой страницы.Кроме того, до 2025 года планируется начать эскизное проктирование автоматических исследовательских станций нового поколения, которые смогут приступить к изучению Луны во второй половине следующего десятилетия и после 2030 года.

Научные задачи

- исследование состава вещества и физических процессов на лунных полюсах
- исследование процессов взаимодействия космической плазмы с поверхностью и свойств экзосферы на лунных полюсах
- исследование внутреннего строения Луны методами глобальной сейсмометрии
- исследование космических лучей сверхвысоких энергий

Второй этап: 2028-2030 годы

Второй этап является переходным. Разработчики программы рассчитывают, что к этому времени у страны появится ракета-носитель сверхтяжелого класса грузоподъемностью около 90 тонн (на низкой орбите Земли). На эти годы запланирована отработка операций по высадке на Луну пилотируемой экспедиции. Предполагаются полеты космонавтов на окололунную орбиту на новом корабле ПТК НП , окололунные стыковки корабля с топливными модулями и многоразовым с взлетно-посадочным аппаратом. Последний должен будет несколько раз подбирать с поверхности Луны образцы ледосодержащего грунта, которые космонавты смогут доставить на Землю. Программа отработки операций включает и дозаправку взлетно-посадочного модуля на орбите Луны.

Третий этап: 2030-2040 годы

В этот период на должен быть создан «лунный полигон» с первыми элементами инфраструктуры. Пилотируемые полеты предполагаются только в виде кратковременных экспедиций посещения. Целью космонавтов будет обслуживание техники, машин и научного оборудования.

Четвертый этап: за горизонтом планирования

После 2040 года на базе лунного полигона должна быть построена постоянно обитаемая лунная база с элементами астрономической обсерватории. Работники базы займутся мониторингом Земли, экспериментами по использованию лунных ресурсов, отработкой новой космической техники, необходимой для экспедиций в дальний космос.

Метки

Советские автоматические станции "Луна"

"Луна-1" - первая в мире АМС, запущенная в район Луны 2 января 1959. Пройдя вблизи Луны на расстоянии 5-6 тысяч км от её поверхности, 4 января 1959 АМС вышла из сферы действия земного тяготения и превратилась в первую искусственную планету Солнечной системы с параметрами: перигелий 146,4 млн. км и афелий 197,2 млн. км. Конечная масса последней (3-й) ступени ракеты-носителя (РН) с АМС "Луна-1" 1472 кг. Масса контейнера "Луна-1" с аппаратурой 361,3 кг. На АМС размещались радиоаппаратура, телеметрическая система, комплекс приборов и другое оборудование. Приборы предназначены для изучения интенсивности и состава космических лучей, газовой компоненты межпланетного вещества, метеорных частиц, корпускулярного излучения Солнца, межпланетного магнитного поля. На последней ступени ракеты была установлена аппаратура для образования натриевого облака - искусственной кометы. 3 января на расстоянии 113 000 км от Земли было образовано визуально наблюдаемое золотисто-оранжевое натриевое облако. При полёте "Луна-1" впервые была достигнута вторая космическая скорость. В межпланетном пространстве впервые зарегистрированы сильные потоки ионизированной плазмы. В мировой печати АМС "Луна-1" получила название "Мечта".

"Луна-2" 12 сентября 1959 совершила первый в мире перелёт на другое небесное тело. 14 сентября 1959 АМС "Луна-2" и последняя ступень РН достигли поверхности Луны (западнее Моря Ясности, вблизи кратеров Аристилл, Архимед и Автолик) и доставили вымпелы с изображением Государственного герба СССР. Конечная масса АМС с последней ступенью РН 1511 кг при массе контейнера, а также научной и измерительной аппаратуры 390,2 кг. Анализ научной информации, полученной "Луна-2", показал, что Луна практически не имеет собственного магнитного поля и радиационного пояса.

Луна-2


"Луна-3" запущена 4 октября 1959. Конечная масса последней ступени РН с АМС "Луна-3" 1553 кг, при массе научной и измерительной аппаратуры с источниками питания 435 кг. В состав аппаратуры входили системы: радиотехническая, телеметрическая, фототелевизионная, ориентации относительно Солнца и Луны, энергопитания с солнечными батареями, терморегулирования, а также комплекс научной аппаратуры. Двигаясь по траектории, огибающей Луну, АМС прошла на расстоянии 6200 км от её поверхности. 7 октября 1959 с борта "Луна-3" сфотографирована обратная сторона Луны. Фотокамеры с длинно- и короткофокусным объективами засняли почти половину поверхности лунного шара, одна треть которой находилась в краевой зоне видимой с Земли стороны, а две трети - на невидимой. После обработки плёнки на борту полученные изображения были переданы фототелевизионной системой на Землю, когда станция находилась от неё на расстоянии 40 000 км. Полёт "Луна-3" был первым опытом изучения другого небесного тела с передачей его изображения с борта космического аппарата. После облёта Луны АМС перешла на вытянутую, эллиптическую орбиту ИСЗ с высотой апогея 480 тысяч км. Совершив 11 оборотов по орбите, она вошла в земную атмосферу и прекратила существование.


Луна-3


"Луна-4" - "Луна-8" - АМС, запущенные в 1963-65 для дальнейшего исследования Луны и отработки мягкой посадки на неё контейнера с научной аппаратурой. Была завершена экспериментальная отработка всего комплекса систем, обеспечивающих мягкую посадку, включая системы астроориентации, управления бортовой радиоаппаратуры, радиоконтроля траектории полёта и приборов автономного управления. Масса АМС после отделения от разгонной ступени РН 1422-1552 кг.


Луна-4


"Луна-9" - АМС, впервые в мире осуществившая мягкую посадку на Луну и передачу изображения её поверхности на Землю. Запущена 31 января 1966 4-ступенчатой РН с использованием опорной орбиты ИСЗ. Автоматическая лунная станция прилунилась 3 февраля 1966 в районе Океана Бурь, западнее кратеров Рейнер и Марий, в точке с координатами 64° 22" з. д. и 7° 08" с. ш. На Землю переданы панорамы лунного ландшафта (при разных углах Солнца над горизонтом). Проведено 7 сеансов радиосвязи (продолжительностью более 8 ч) для передачи научной информации. АМС работала на Луне 75 ч. "Луна-9" состоит из АМС, предназначенной для работы на поверхности Луны, отсека с аппаратурой управления и двигательной установки для коррекции траектории и торможения перед посадкой. Общая масса "Луна-9" после выведения на траекторию полёта к Луне и отделения от разгонной ступени РН 1583 кг. Масса АМС после посадки на Луну 100 кг. В её герметичном корпусе размещены: телевизионная аппаратура, аппаратура радиосвязи, программно-временное устройство, научная аппаратура, система терморегулирования, источники электропитания. Изображения лунной поверхности, переданные "Луна-9", и успешная посадка имели решающее значение для дальнейших полётов к Луне.


Луна-9


"Луна-10" - первый искусственный спутник Луны (ИСЛ). Стартовала 31 марта 1966. Масса АМС на трассе полёта к Луне 1582 кг, масса ИСЛ, отделённого 3 апреля после перехода на селеноцентрическую орбиту, 240 кг. Параметры орбиты: периселений 350 км, апоселений 1017 км, период обращения 2 ч 58 мин 15 сек, наклонение плоскости лунного экватора 71° 54". Активная работа аппаратуры 56 суток. За это время ИСЛ совершил 460 витков вокруг Луны, проведено 219 сеансов радиосвязи, получена информация о гравитационных и магнитном полях Луны, магнитном шлейфе Земли, в который не раз попадали Луна и ИСЛ, а также косвенные данные о химическом составе и радиоактивности поверхностных лунных пород. С ИСЛ передавалась на Землю по радио мелодия "Интернационала", впервые - во время работы 23-го съезда КПСС. За создание и запуск АМС "Луна-9" и "Луна-10" Международная авиационная федерация (ФАИ) наградила советских учёных, конструкторов и рабочих почётным дипломом.


Луна-10


"Луна-11" - второй ИСЛ; запущена 24 августа 1966. Масса АМС 1640 кг. 27 августа "Луна-11" была переведена на окололунную орбиту с параметрами: периселений 160 км, апоселений 1200 км, наклонение 27°, период обращения 2 ч 58 мин. ИСЛ совершил 277 витков, проработав 38 суток. Научные приборы продолжали исследование Луны и окололунного пространства, начатые ИСЛ "Луна-10". Проведено 137 сеансов радиосвязи.


Луна-11


"Луна-12" - третий советский ИСЛ; запущена 22 октября 1966. Параметры орбиты: периселений около 100 км, апоселений 1740 км. Масса АМС на орбите ИСЛ 1148 кг. "Луна-12" активно функционировала 85 суток. На борту ИСЛ, кроме научной аппаратуры, находилась фототелевизионная система с высоким разрешением (1100 строк); с её помощью получены и переданы на Землю крупномасштабные изображения участков лунной поверхности в районе Моря Дождей, кратера Аристарх и других (различаются кратеры размером до 15-20 м, а отдельные объекты размером до 5 м). Станция функционировала до19 января 1967. Проведено 302 сеанса радиосвязи. На 602-м витке после выполнения программы полета радиосвязь со станцией была прервана.


Луна-12


"Луна-13" - вторая АМС, совершившая мягкую посадку на Луну. Запущена 21 декабря 1966. 24 декабря произвела посадку в районе Океана Бурь в точке с селенографическими координатами 62° 03" з. д. и 18° 52" с. ш. Масса АМС после посадки на Луну 112 кг. С помощью механического грунтомера, динамографа и радиационного плотномера получены данные о физико-механических свойствах поверхностного слоя лунного грунта. Газоразрядные счётчики, регистрировавшие космическое корпускулярное излучение, позволили определить отражательную способность лунной поверхности для космических лучей. На Землю переданы 5 крупных панорам лунного ландшафта при различных высотах Солнца над горизонтом.


Луна-13


"Луна-14" - четвёртый советский ИСЛ. Запущена 7 апреля 1968. Параметры орбиты: периселений 160 км, апоселений 870 км. Проводилось уточнение соотношения масс Земли и Луны; исследовались гравитационное поле Луны и её форма методом систематических длительных наблюдений за изменениями параметров орбиты; изучались условия прохождения и стабильности радиосигналов, передаваемых с Земли на борт ИСЛ и обратно при различных положениях его относительно Луны, в частности при заходе за лунный диск; измерялись космические лучи и потоки заряженных частиц, идущих от Солнца. Получена дополнительная информация для построения точной теории движения Луны.

"Луна-15" запущена 13 июля 1969 года, за три дня до запуска «Аполлона-11». Целью данной станции было взятие проб лунного грунта. На лунную орбиту вышла одновременно с «Аполлоном-11». В случае успеха наша станциям могла бы взять пробы грунта и впервые совершить старт с Луны с возвращением на Землю раньше американцев. В книге Ю.И.Мухина «Анти-Аполлон: лунная афера США» говорится: «хотя вероятность столкновения была гораздо ниже, чем в небе над Боденским озером, американцы запросили АН СССР о параметрах орбиты нашей АМС, Они были им сообщены. АМС почему-то долго болталась на орбите. Потом совершила жесткую посадку на реголит. Американцы состязание выиграли. Как? Что значат эти дни кружения «Луны-15» вокруг Луны: возникшие на борту неполадки или… переговоры каких-то инстанций? Сама ли крахнулась наша АМС или ей помогли это сделать?». Взять пробы грунта смогла только «Луна-16».


Луна-15


"Луна-16" - АМС, впервые совершившая рейс Земля - Луна - Земля и доставившая образцы лунного грунта. Стартовала 12 сентября 1970. 17 сентября вышла на селеноцентрическую круговую орбиту с удалением от лунной поверхности 110 км, наклонением 70°, периодом обращения 1 ч 59 мин. В дальнейшем была решена сложная задача формирования предпосадочной орбиты с низким периселением. Мягкая посадка произведена 20 сентября 1970 в районе Моря Изобилия в точке с координатами 56°18" в. д. и 0°41" ю. ш. Грунтозаборное устройство обеспечило бурение и забор грунта. Старт с Луны ракеты "Луна - Земля" произведён по команде с Земли 21 сентября 1970. 24 сентября возвращаемый аппарат был отделен от приборного отсека и совершил посадку в расчётном районе. "Луна-16" состоит из посадочной ступени с грунтозаборным устройством и космической ракеты "Луна - Земля" с возвращаемым аппаратом. Масса АМС при посадке на поверхность Луны 1880 кг. Посадочная ступень - самостоятельный ракетный блок многоцелевого назначения, имеющий жидкостный ракетный двигатель, систему баков с компонентами топлива, приборные отсеки и амортизированные опоры для посадки на поверхность Луны.


Луна-16


"Луна-17" - АМС, доставившая на Луну первую автоматическую передвижную научную лабораторию "Луноход-1". Запуск "Луна-17" - 10 ноября 1970, 17 ноября - мягкая посадка на Луну в районе Моря Дождей, в точке с координатами 35° з. д. и 38°17" с. ш.

Перед советскими учеными и конструкторами при разработке и создании лунохода встала необходимость решения комплекса сложных проблем. Надо было создать совершенно новый тип машины, способной длительное время функционировать в необычных условиях открытого космоса на поверхности другого небесного тела. Основные задачи: создание оптимального движителя с высокой проходимостью при малых массе и энергопотреблении, обеспечивающего надёжную работу и безопасность движения; систем дистанционного управления движением лунохода; обеспечение необходимого теплового режима с помощью системы терморегулирования, поддерживающей температуру газа в приборных отсеках, элементов конструкции и оборудования, расположенных внутри герметичных отсеков и вне их (в открытом космосе в периоды лунных дней и ночей) в заданных пределах; выбор источников питания, материалов для элементов конструкции; разработка смазочных материалов и систем смазок для условий вакуума и другое.

Научная аппаратура Л. с. а. должна была обеспечить изучение топографических и селено-морфологических особенностей местности; определение химического состава и физико-механических свойств грунта; исследование радиационной обстановки на трассе перелёта к Луне, в окололунном пространстве и на поверхности Луны; рентгеновского космического излучения; эксперименты по лазерной локации Луны. Первый Л. с. а. - советский "Луноход-1" (рис. 1), предназначенный для проведения большого комплекса научных исследований на поверхности Луны, был доставлен на Луну автоматической межпланетной станцией "Луна-17" (смотри Ошибка! Источник ссылки не найден.), проработал на её поверхности с 17 ноября 1970 по 4 октября 1971 и прошёл 10540 м. "Луноход-1" состоит из 2 частей: приборного отсека и колёсного шасси. Масса "Лунохода-1" 756 кг. Герметичный приборный отсек имеет форму усечённого конуса. Корпус его изготовлен из магниевых сплавов, обеспечивающих достаточные прочность и лёгкость. Верхняя часть корпуса отсека используется как радиатор-охладитель в системе терморегулирования и закрывается крышкой. В период лунной ночи крышка закрывает радиатор и препятствует излучению тепла из отсека. В течение лунного дня крышка открыта, и элементы солнечной батареи, расположенные на её внутренней стороне, обеспечивают подзарядку аккумуляторов, питающих бортовую аппаратуру электроэнергией.

В приборном отсеке размещены системы терморегулирования, электропитания, приёмные и передающие устройства радиокомплекса, приборы системы дистанционного управления и электронно-преобразовательные устройства научной аппаратуры. В передней части расположены: иллюминаторы телевизионных камер, электрический привод подвижной остронаправленной антенны, служащей для передачи на Землю телевизионных изображений лунной поверхности; малонаправленная антенна, обеспечивающая приём радиокоманд и передачу телеметрической информации, научные приборы и оптический уголковый отражатель, изготовленный во Франции. По левому и правому бортам установлены: 2 панорамные телефотокамеры (причём в каждой паре одна из камер конструктивно объединена с определителем местной вертикали), 4 штыревые антенны для приёма радиокоманд с Земли в другом диапазоне частот. Для подогрева газа, циркулирующего внутри аппарата, служит изотопный источник тепловой энергии. Рядом с ним расположен прибор для определения физико-механических свойств лунного грунта.

Резкие температурные перепады при смене дня и ночи на поверхности Луны, а также большая разница температур между деталями аппарата, находящимися на Солнце и в тени, обусловили необходимость разработки специальной системы терморегулирования. При низких температурах в период лунной ночи для обогрева приборного отсека автоматически прекращается циркуляция газа-теплоносителя по контуру охлаждения и газ направляется в контур подогрева.

Система электропитания лунохода состоит из солнечной и химической буферных батарей, а также приборов автоматического управления. Управление приводом солнечной батареи осуществляется с Земли; при этом крышка может быть установлена на любой угол в пределах от нуля до 180°, необходимый для максимального использования солнечной энергии.

Бортовой радиокомплекс обеспечивает приём команд из Центра управления и передачу информации с борта аппарата на Землю. Ряд систем радиокомплекса используется не только при работе на поверхности Луны, но и на участке перелёта с Земли. Две телевизионные системы Л. с. а. служат для решения самостоятельных задач. Система малокадрового телевидения предназначена для передачи на Землю телевизионных изображений местности, необходимых экипажу, управляющему с Земли движением лунохода. Возможность и целесообразность применения такой системы, для которой характерна более низкая по сравнению с вещательным телевизионным стандартом скорость передачи изображения, была продиктована специфическими лунными условиями. Основное из них - медленное изменение ландшафта при движении лунохода. Вторая телевизионная система служит для получения панорамного изображения окружающей местности и съёмки участков звёздного неба, Солнца и Земли с целью астроориентации. Система состоит из 4 панорамных телефотокамер.

Самоходное шасси обеспечивает решение принципиально новой задачи космонавтики - передвижение автоматической лаборатории по поверхности Луны. Оно выполнено таким образом, чтобы луноход имел высокую проходимость и надёжно работал в течение длительного времени при минимальной собственной массе и потребляемой электроэнергии. Шасси обеспечивает передвижение лунохода вперёд (с 2 скоростями) и назад, повороты на месте и в движении. Оно состоит из ходовой части, блока автоматики, системы безопасности движения, прибора и комплекса датчиков для определения механических свойств грунта и оценки проходимости шасси. Поворот достигается за счёт различных скоростей вращения колёс правого и левого бортов и изменением направления их вращения. Торможение осуществляется переключением тяговых электродвигателей шасси в режим электродинамического торможения. Для удержания лунохода на уклонах и его полной остановки включаются дисковые тормоза с электромагнитным управлением. Блок автоматики управляет движением лунохода по радиокомандам с Земли, измеряет и контролирует основные параметры самоходного шасси и автоматическую работу приборов для исследования механических свойств лунного грунта. Система безопасности движения обеспечивает автоматическую остановку при предельных углах крена и дифферента и перегрузках электродвигателей колёс.

Прибор для определения механических свойств лунного грунта позволяет оперативно получать информацию о грунтовых условиях движения. Пройденный путь определяется по числу оборотов ведущих колёс. Для учёта их пробуксовки вносится поправка, определяемая с помощью свободно катящегося девятого колеса, которое специальным приводом опускается на грунт и поднимается в исходное положение. Управление аппаратом осуществляется из Центра дальней космической связи экипажем в составе командира, водителя, штурмана, оператора, бортинженера.

Режим движения выбирается в результате оценки телевизионной информации и оперативно поступающих телеметрических данных о величине крена, дифферента пройденного пути, состояния и режимах работы приводов колёс. В условиях космического вакуума, радиации, значительных перепадов температур и сложного рельефа местности по трассе движения все системы и научные приборы лунохода функционировали нормально, обеспечив выполнение как основной, так и дополнительной программ научных исследований Луны и космического пространства, а также инженерно-конструкторских испытаний.


Луна-17


"Луноход-1" детально обследовал лунную поверхность на площади 80 000 м2. Для этого с помощью телевизионных систем было получено более 200 панорам и свыше 20 000 снимков поверхности. Более чем в 500 точках по трассе движения изучались физико-механические свойства поверхностного слоя грунта, а в 25 точках проведён анализ его химического состава. Прекращение активного функционирования "Лунохода-1" было вызвано выработкой ресурсов его изотопного источника тепла. В конце работы он поставлен на практически горизонтальной площадке в такое положение, при котором уголковый светоотражатель обеспечил многолетнее проведение лазерной локации его с Земли.


"Луноход-1"


"Луна-18" запущена 2 сентября 1971. На орбите станция осуществляла маневрирование с целью отработки методов автоматической окололунной навигации и обеспечения посадки на Луну. "Луна-18" совершила 54 витка. Проведено 85 сеансов радиосвязи (проверка работы систем, измерение параметров траектории движения). 11 сентября была включена тормозная двигательная установка, станция сошла с орбиты и достигла Луны в материковой части, окружающей Море Изобилия. Район посадки был выбран в гористой местности, представляющей большой научный интерес. Как показали измерения, прилунение станции в этих сложных топографических условиях оказалось неблагоприятным.

"Луна-19" - шестой советский ИСЛ; запущена 28 сентября 1971. 3 октября станция вышла на селеноцентрическую круговую орбиту с параметрами: высота над поверхностью Луны 140 км, наклонение 40° 35", период обращения 2 ч 01 мин 45 сек. 26 и 28 ноября станция была переведена на новую орбиту. Проводились систематические длительные наблюдения за эволюцией её орбиты с целью получения необходимой информации для уточнения гравитационного поля Луны. Непрерывно измерялись характеристики межпланетного магнитного поля в окрестностях Луны. На Землю переданы фотографии лунной поверхности.


"Луна-19"


"Луна-20" запущена 14 февраля 1972. 18 февраля в результате торможения переведена на круговую селеноцентрическую орбиту с параметрами: высота 100 км, наклонение 65°, период обращения 1 ч 58 мин. 21 февраля осуществила мягкую посадку на поверхность Луны впервые в горном материковом районе между Морем Изобилия и Морем Кризисов, в точке с селенографическими координатами 56° 33" в. д. и 3° 32" с. ш. "Луна-20" по конструкции аналогична "Луна-16". Грунтозаборный механизм произвёл бурение лунного грунта и забор образцов, которые были помещены в контейнер возвращаемого аппарата и загерметизированы. 23 февраля с Луны стартовала космическая ракета с возвращаемым аппаратом. 25 февраля возвращаемый аппарат АМС "Луна-20" совершил посадку в расчётном районе территории СССР. На Землю были доставлены образцы лунного грунта, впервые взятые в труднодоступном материковом районе Луны.

"Луна-21" доставила на поверхность Луны "Луноход-2". Запуск был осуществлен 8 января 1973. "Луна-21" совершила мягкую посадку на Луну на восточной окраине Моря Ясности, внутри кратера Лемонье, в точке с координатами 30° 27" в. д. и 25° 51" с. ш. 16 января с посадочной ступени "Луна-21" по трапу сошёл "Луноход-2" .


"Луна-21"


16 января 1973 с помощью автоматической станции "Луна-21" в район восточной окраины Моря Ясности (древний кратер Лемонье) был доставлен "Луноход-2". Выбор указанного района посадки диктовался целесообразностью получения новых данных из сложной зоны сочленения моря и материка (а также, по утверждению некоторых исследователей, с целью проверки достоверности факта высадки американцев на Луну). Усовершенствование конструкции к бортовых систем, а также установка дополнительных приборов и расширение возможностей аппаратуры позволили значительно повысить манёвренность и выполнить большой объём научных исследований. За 5 лунных дней в условиях сложного рельефа "Луноход-2" прошёл расстояние 37 км.


"Луноход-2"


"Луна-22" была запущена 29 мая 1974 года и 9 июня перешла на лунную орбиту. Выполняла функции искусственного спутника Луны, исследования окололунного пространства (в том числе метеоритной обстановки).

"Луна-23" была запущена 28 октября 1974 года и совершила мягкую посадку на Луну 6 ноября. Вероятно, ее запуск был приурочен к очередной годовщине Великого Октября. В задачи станции входили взятие и исследование лунного грунта, однако прилунение состоялось в области с неблагоприятным рельефом, из-за чего грунтозаборное устройство сломалось. 6-9 ноября исследования проводились по сокращенной программе.

"Луна-24" была запущена 9 августа 1976 года и прилунилась 18 августа в районе Моря Кризисов. Задачей станции было взятие "морского" лунного грунта (при том, что "Луна-16" взяла грунт на границе моря и материка, а "Луна-20" - на материковой области). Взлетный модуль с лунным грунтом стартовал с Луны 19 августа, и 22 августа капсула с грунтом достигла Земли.


"Луна-24"